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NOMENCLATURE 

amplitude of the convective parameter; 
cylinder diameter ; 
gravity field; 
cylinder height; 
operator; 
spatial mode; 
= v/k, Prandtl number; 
Rayleigh number; 
critical Rayleigh number; 
Rayleigh number at oscillations occurrence ; 
time; 
characteristic time; 
temperature ; 
velocity perturbation ; 
vertical coordinate ; 
coefficient of volume expansion in water 
around its maximum density; 
thermal boundary layer thickness; 
kinematic viscosity ; 
thermal diffusivity ; 
fluid density; 
temperature perturbation ; 
period of the first temporal mode ; 
angle in the horizontal plane. 

1. INTRODUCTION 
UP TO NOW, a good deal of interest has been generated by the 
observation ofregular temperature oscillationsin fluid layers. 
However, unsteady convective instabilitiesin enclosures have 
received little attention ; in particular studies in long vertical 
cylinders are few [l-3]. 

The existence of such time-dependent instabilities is of 
some importance in the field of geology, astrophysics and 
crystal growth. 

In this paper, we analyse experiments and observations 
that we have made on high Rayleigh numbers in completely 
confined water columns. The investigation of time-dependent 
effects beyond the onset of convection induced by the density 
inversion of water was achieved by local temperature 
measurements. 

2. THE EXPERIMENTAL SITUATION 

The experimental cell is sketched in Fig. 1. It is a cylinder of 
variable height h and diameter D = 3.5 cm. The top and 
bottom boundaries are made of copper. The wall consists of 
0.2 cm thick Plexiglas. By means of a suitable coolant 
(alcohol + water) through the copper block, any desired 

temperature gradient could be maintained in the liquid. In the 
present case, the bottom is subjected to 0°C and the top to 
4°C. Temperature distributions in water were obtained 
from constantan-manganine thermocouples measurements, 
These thermocouples were inserted into the fluid at different 
locations. To obtain temperatures against the z coordinate 
T(z) and around the mid-height cross-section T(q), ther- 
mocouples are equally imbedded in the cylinder wall in direct 
contact with the fluid. Subsequent experiments showed that 
their presence did not drastically alter fluid motion. 

In order to explore temperature along a diameter, one 
thermocouple inside an alumina cane was moved laterally. In 
this case, the presence of the thermocouple affected the nature 
of temperature measurements because of its interaction with 
the thermally driven flow. 

3. OBSERVATIONS 

In certain cell configurations, as the vertical temperature 
difference is well established and after a time much longer 
than the thermal relaxation time, the fluid temperature 
appeared to oscillate spontaneously. A typical plot of local 
temperature signals is given in Fig. 2a. With constant external 
conditions, oscillations continued with constant amplitude 
and frequency over periods as long as 24 h with no noticeable 
change; but, sometimes they decayed. Under certain 
conditions convective motion may be either periodic, quasi- 
periodic or completely erratic. 

For all experimental conditions the data are separated 
into two distinct groups: 

(1) for 0.86 < i < 1.14 and 55 < 2 < 73 
c 

well defined oscillations are established with amplitudes less 
than 1°C and periods about 7 mn; 

(2) for 1.14 < $ < 1.43 and 44 < 2 < 55 
C 

random oscillatory convection appeared. 
The power spectra were calculated by Fourier transform. 

Many signals appeared to be composed of a fundamental 
frequency with higher harmonics suoerimuosed (Fig. 2b). In 
all -the cases, the simplest period is about 7 mn; this 
corresponds within experimental errors to the thermal dif- 
fusion time in the column water estimated to be 6mn. 
Consequently, the period is governed by the thermal diffu- 
sivity. Generally the frequency of the oscillation was charac- 
teristic of the cylinder size and the Rayleigh number ; if r is the 
period of the first mode r/Ra is roughly constant = 28. 
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FIG. I. ~x~rimentai cell. 

Adding ~uoresccine, a heavy salt, o~illations occurred for 
h/D = 1,57 which is higher than in the case of pure water. 
Amplitudes are less than I .5’C and 7: is by and large 13 mn ; 
hence, T salt > T water. This result made evident the role of 
the density p on the onset of convection. The observed 
oscillations are not near steady convection as the Rayleigh 
numbers are in a very high range; these Rayleigh numbers 
being imposed by the geometry. Let us recall that in the 
region of the maximum density of water the thermal coef- 

bl 

FIG. 2. (a) Typical temperature oscillations recorded by two 
thermocouples placed on the vertical axis, h = 3.9cm. (b) 

Spectrum of the signals plotted on Fig. 2a 

ficient of expansion approaches zero and the Rayleigh 
number is normally written becomes inadequate to define the 
problem. A modified Rayleigh number, then, in a long vertical 
cylinder filled with water is expressed as : 

The critical Rayleigh number Ra, was determined for every 
h by a linear stability analysis communicated elsewhere [4]. 

4. DISCUSSION 

Our results differ signi~cantly from previous data in 
cylinders. Using liquid mercury, Pr = 0.25, Verhoeven [2] 
found that the critical Rayleigh number for the onset of 
periodic temperature fluctuations Ra,,exceeded the theoreti- 
cal Rn, by only lo?<. Olson and Rosenberger [3] obtained for 
monocomponent gases Ra,,,,!Ra,= 5.86. Whereas for air (Pr 
= 0.7) confined between large horizontal conducting plates 
in the Rayleigh Bdnard problem, Willis and Deardorff [S] 
obtained Ra,,./Ra, = 3.4 and Krishnamurti [6] Ru,,,/ Ra, 
= 2.8. Comparison with our results urges the interesting 
conclusion that the stability of the fluid is increased not only 
by the presence of vertical walls but also by using water 
instead of other fluids. 

4.1. Comparison with preoious models 
Temperature oscillations are associated with unsteady flow 

convection. In general, there is no obvious correlation 
between these data and existing theoretical models of con- 
vective temperature osciliat~ons, as most of the theoretical 
models were formulated for the Rayleigh-B~nard geometry. 
As far as we can discern, none of the simplest models 
suggested can adequately explain the complex phase of the 
structure. Howard 173 has proposed a periodically unstable 
horizontal thermal boundary layer model with possibly 
release of thermals or plumes. The thickness of the thermal 
boundary layer 6,, increases as fi,,, = Jn~t*, f* is the nec- 
essary time for the boundary layer to be rebuilt after being 
suddenly broken away. Example : for h = 4 cm, the observed 
period 5 is 2 7mn. If we calculate the corresponding 
boundary layer, we will obtain a,,, = 1.34cm which is of the 
same order of magnitude of the radius D/2 = I .7 cm ; whereas 
Howard assumed that S,, is much lower than the characteris- 
tic length of the problem. The hot spot theory is similar to the 
Welander model [S] : it consists of a hot pocket of fluid which 
interacts with a pre-existing roll; it goes up very quickly and 
comes down slowly. There are schematically two main phases 
in a complete cycle. The first one corresponds to the growing 
of a hot droplet. The second stage corresponds to the 
advection of this droplet: after an acceleration and a 
warming-up, then overturning and destruction of the roll. 
These unstable motions are associated with thermal anom- 
alies in the fluid that are advected materially around the roll. 
The models above do not describe the oscillatory behaviour 
of the present case where the oscillations are in phase along 2 
(Fig. 2a). 

Oscillatory convection due to vertical vorticity (a, a) 
variations or horizontal vorticity @,a) variations are not 
available either in this case. A LX’ variation causes an 
asymmetric roll to rotate around its own axis, temperature 
oscillations at a stationary thermocoupfe will be in phase 
along the vertical flow direction and out of phase in any radial 
direction. In hc variation the roll changes its amplitude, 
contracts during one half-period and linds its initial form 
again at the end of one period. 

Indeed, first there is not a global rotation of the convective 
structure as at the two diametrically opposite points oscil- 
lations are not out of phase contrarily to the results obtained 
in water when a freezing front goes upwards [9]. Secondly, 
the profiles of the angular temperature given by four ther- 
mocouples located regularly around the cross-section are so 
different (Fig. 3) that a whole motion of a unique role with the 
same spatial dependence but modulated by sin (of isexcluded. 
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4.2. Conditions of relaxation oscillations occurrence 
Although in many cases the interpretation was ambiguous, 

the most unsteady phenomena which were observed are 
represented versus time by a smooth ascension and an abrupt 
descent; this is characteristic of relaxation oscillations. 
Likeness with oscillations of relaxation determined theoret- 
ically by Busse is striking (Fig. 4). Occurrence of this type of 
oscillations in fluids with the Prandtl number Pr > 1 is 
subordinate to two conditions. First the material properties 
of the fluid layer are not symmetrical with respect to the mid- 
plane of the layer. This implies that at the static state only a 
part of the layer is gravitationally unstable. Secondly, the 
layer adjacent to the unstable layer has a high heat capacity 
so that it could serve as a heat reservoir. 

Both conditions assume the existence of an inverted 
bifurcation. The present case satisfies the first condition but 
not the second one. Indeed, the linear stability analysis [4] 
has proven that a stagnant layer ofwater exists near 4°C when 
the asymmetry of the density p with respect to the mid-plane 
of the layer resulting from the law p (T) is taken into account. 
However, for aspect ratios near the unity, calculations have 
shown that the thickness of the non-convective water layer 
does not exceed 0.3 cm and thus it cannot play the role of a 
heat reservoir. 

The physical mechanism of a periodic relaxation process 
can be summarized as follows; as the convective motion 
grows, it flattens the temperature gradients until the effective 
Rayleigh number is lowered so far that the convection dies 
away. As soon as the heat transport by conduction has 
increased the temperature gradients, the convective layer is 
rebuilt and convection will start growing again. 

For aspect ratio near unity, the duration of the establish- 
ment phase of temperature is I* z 6s. This time is too short to 
allow the Rayleigh number to decrease beyond its critical 
value. For this reason, the solution given above must be 
eliminated and two other processes admitting different 
response times remain to be defined. One can note that the 
observed oscillations occur in pure water for h/D between 
0.86 and 1.2. Now, if one examines the stability curves in 
water [4], one will notice that for h/D = 0.75 the convective 
modes n = 1 and n = 0 have crossed each other, thus it will 
be possible to jump from one to the other. Nevertheless, 
oscillations between these two modes can only exist if an 
inverted bifurcation exists. 

4.3. Subcritical instabilities in water between 0 and 4°C 
Veronis [lo] has demonstrated in a water layer of inlinite 

lateral extent case “free - free” that any asymmetry in the 
horizontal plane entails an inverted bifurcation and so a 

I 0,5 “c 

‘P=O-2n 

zmn 
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FIG. 3. Angular temperatures given by four thermocouples 
regularly placed at the mid-cross-section. 
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a) b) 

FIG. 4. (a) Relaxation oscillations after Busse. [(J. Fluid 
Mech. 30, 625 (1967)]. (b) Recordings of temperature in the 

course of time along z for h/D 2 1. 

subcritical Rayleigh number. He has developed the Rayleigh 
number, the fluctuations of temperature and velocity in a 
series such as: 

u = Ella + E%, + c%z, 

8 = tiO + c2e, + 2e2, 

Ra=Ra,+eRa,+&2Ra,+..., 

(1) 

Ra, being the critical Rayleigh number Ra, given by the linear 
theory. Then, he solved the governing equations up to the 
second order, which led to the following conclusions: (a) 
when convective cells are hexagonal a horizontal asymmetry 
is introduced and Ra, is different from zero. Then Ra - Ra, 
= i Ra,. If Ra, $ 0, E 3 0 requires that Ra < Ra,. 
Consequently, a finite amplitude instability is possible for a 
subcritical Rayleigh number; (b) when convective cells occur 
as 2 rolls, Ra, = 0 and Ra, < 0. Symmetry in the horizontal 
plane means that only the terms in sZPpersist in the expansion 
of Ra. Hence, in this case, any subcritical instability is only 
possible if Ra, is negative. In fact starting from (1) one can 
write : 

Ra - Ra 
cz= A, 

Ra, 

As c2 is > 0, Ra is < Ra, when Ra, < 0. 
We shall follow the same argument for the modes n = 0 and 

n = 1. Already, we notice a similarity between hexagonal flow 
and the axisymmetrical mode n = 0 which leads us to imagine 
that in the mode n = 0 an inverted bifurcation may exist, But 
in the mode n = 1 where there is a symmetry in the horizontal 
plane it is probably impossible. Let us consider the linear 
problem defined by an operator 6p, with _Y’koB, = 0 and the 
non-linear problem where the quadratic terms of 0 and u are 
considered. The non-linear terms are, 



Ra 1 is such that the second member af (2) is orthogonal to the 
care of Y. That yields: 

t 

Frf;. 5. Mecfianism of relaxation osc%ations between n = a 
and n = 1, 

As a rule, ta define a bifurcation scheme of these two modes 
and the possibility of relaxation oscillations it would be 
necessary to have the: amplitudes of the convective velocities 
in order to deduct: their contribution to the heat flux and to 
know which of them absorbed most heat. However we are in B 
position to give a diagram illustrating the amplitude A of 
temperature or velocity fluctuations versus the Ray&& 
number Ru (Fig. 3). As the mode n = 1 is the more unstable, 
Ra,,, is lower than Ro,,, Basing our investigation upon this 
diagram, we can imagine that the mode n = f ckanges its 
~~~m$e A 1 c~~~act~~g and the mode r? = 0 co&d grow XQ 
diminish ~t~rw~~ thus ~~~~~ng a periodic exchange 
be&veer& n = Oandn = 1. 

To answer some of the questions generated by the di@erent 
convective states observed (periodic, quasi-periodic, erratic) 
the physical mechanism suggested as responsible of oscil- 
latory flowsin a .omall confined cylinder has been ba.& on the 
conditions of oscillations occurrence and the nature of the 
flow. If consists afrclaxation oscillations between the axisym- 
metrical mods ?I .= 0 and the first diametral antisymmetsica’l 
mode n = 1. 
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